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Abstract
Drug-induced cognitive impairment (DICI) is a well-established, yet under-recognised, complication of many types of 
pharmacological treatment. While there is a large body of scientific literature on DICI, most papers are about drug-induced 
dementia in the elderly and one specific drug class. However, DICI also comprises subclinical symptoms, domain-specific 
forms of cognitive impairment as well as mild cognitive impairment (MCI), and delirium. Even mild forms of DICI, if not 
recognised as such, can have deleterious and life-long consequences. In addition, DICI also occurs in younger adults and in 
children, and has been reported with many different drug classes. The aim of this review is to raise awareness of DICI by 
providing an overview on the type(s) and symptoms of observed DICI and the suspected underlying mechanism(s) for various 
drug classes: antiseizure medications, antidepressants, antiparkinsonian drugs, antipsychotics, lithium, benzodiazepines/Z-
drugs, opioids, first-generation antihistamines, drugs for urinary incontinence, proton pump inhibitors, glucocorticoids, 
NSAIDs, statins, antihypertensives, and chemotherapeutic agents.

Key Points 

Many drug classes including non-CNS drugs have a 
potential to induce various degrees of cognitive impair-
ment, acutely and chronically, and in all age groups.

While there is much research on drug-induced dementia 
in the elderly, milder forms of drug-induced cognitive 
impairment (DICI) and DICI in younger populations are 
less well studied.

Most clinical trials either ignore the cognitive safety of 
study drugs or use inadequate methods to assess it.

Given the epidemic-like global increase of dementia, 
more research on DICI is urgently needed.

1  Introduction

1.1 � Types and Severity of Drug‑Induced Cognitive 
Impairment

Drug-induced cognitive impairment (DICI) is a term used 
for a decline in cognitive functions that is primarily caused 
by medication. It is an unwanted, negative effect on cogni-
tive abilities that can arise from both CNS-active agents and 
non-CNS-active agents. These negative effects on cognition 
are mediated by a multitude of pathophysiological mecha-
nisms, as we will show in this paper. The type of cognitive 
impairment, its course, and its severity may therefore differ 
between drugs and patients.

DICI can mimic any type of cognitive impairment caused 
by disease or aging and may therefore be insidious in the 
sense that it can be interpreted as symptoms and worsening 
of an existing disease or as onset of a new disease or condi-
tion [1]. As we will describe later, DICI may affect func-
tions in only one or in several cognitive domains. Memory 
problems are a common symptom of DICI and can present 
as difficulty recalling instructions or recent events or missing 
important appointments. Confusion or disorientation regard-
ing space and time may occur. DICI affecting functions 
within the attention domain often present as being distracted 
and having difficulties focusing on a specific task. Slow 
thinking and processing speed as well as decreased reac-
tion time and motor slowness are also common symptoms 
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of DICI. Difficulties with language and communication 
may occur, such as trouble finding the right words, slurred 
speech, or increased response latency. More elaborated 
cognitive tasks, such as complex problem-solving, decision 
making, planning, or organising activities may be affected. 
With medications that induce sedation, cognitive impair-
ment may occur as a consequence of sleepiness [2].

Often, DICI manifests clinically with acute symptoms 
such as severe confusion or delirium. Older patients with 
pre-existing cognitive impairment are at particularly high 
risk of developing drug-induced delirium [1, 3]. The dis-
tinction between delirium and dementia may sometimes be 
confusing. However, the main distinguishing features of 
delirium are the acute onset of an impaired level of con-
sciousness, most often accompanied by illusions or halluci-
nations, changes in perception as well as other acute symp-
toms that are not typical for dementia [4].

DICI may appear shortly (hours or days) after starting 
a new drug, but it can appear at any time during treatment, 
even after long-term use of several years. The degree of 
cognitive impairment correlates often, but not always, with 
dose or serum concentration. In most cases, altered cognitive 
functions normalise after dose reduction or tapering off the 
drug. Usually, this also applies to the more severe cases such 
as dementia-like states, as the underlying pathophysiology of 
drug-induced dementia most often is functional (as opposed 
to structural). However, there are exceptions to this rule and 
DICI may persist for months or years if structural changes 
have developed [5, 6].

DICI severity ranges from subtle, subclinical symptoms 
to mild cognitive impairment (MCI) and, finally, dementia. 
MCI involves some deterioration of cognitive function in at 
least one cognitive domain, combined with subjective com-
plaints or observations by a proxy, with a preserved over-all 
cognitive functioning. By contrast, dementia is more severe 
in terms of objective cognitive deficits and includes loss of 
autonomy in several activities of daily living [7].

Clinical studies, reviews, meta-analyses, and guidelines 
addressing DICI tend to focus on (a) the elderly, (b) mani-
fest dementia, and (c) drugs with anticholinergic or sedating 
properties. It is important to note, though, that a wide range 
of medications can negatively impair cognition—to varying 
degrees, and in all age groups.

1.2 � Epidemiology

Drug-induced dementia has been estimated to account for 
2.7–10% of all dementias [1, 8]. A 1988 review of 32 studies 
found that drugs represent the most common cause of revers-
ible dementia, accounting for 28.2% of the cases [5]. To the 
best of our knowledge, no newer data are available. How-
ever, prescription rates and the individual total drug load 

have increased in the last decades which means that these 
numbers could be higher today [9, 10]. The risk of drug-
induced dementia increases with polypharmacy: three-fold 
with two to three drugs, nine-fold with four to five drugs, 
and 14-fold with more than 6 drugs [11]. The prevalence 
of polypharmacy (i.e., treatment with five or more drugs) 
is globally increasing in adults of all age groups, reaching 
over 60% in people aged 65 years or older in some Western 
countries [12–14]. Clinical experience and case reports sug-
gest that drug-induced dementia is not always recognised as 
such. In such cases, the cognitive problems may continue 
for years [15–20].

Drugs are one of the most common causes of delirium, 
especially in the elderly [1, 21]. Medications with anticho-
linergic and sedating properties are particularly well known 
for this, but other drug classes can also induce delirium. In 
elderly, hospitalised patients, drugs have been reported as 
the cause of delirium in up to 30% of all cases [22]. Polyp-
harmacy more than doubles the risk [23]. Physicians often 
miss drug-induced delirium which suggests that the true 
numbers may be even higher [21].

It must be emphasised that the above epidemiological 
data apply to delirium and dementia. Aside from case stud-
ies and reports, there is a lack of epidemiological data and 
systematic studies on milder, more subtle forms of DICI, and 
on DICI in younger adults and children.

Recent research suggests that 10–20% of adults aged ≥65 
years have MCI [24]. The prevalence of dementia roughly 
doubles for every 5 years of age [25]. With the world popula-
tion growing older, an extensive surge in MCI and dementia 
cases is anticipated. Projections suggest a rise from 57 mil-
lion dementia cases worldwide in 2019 to 153 million cases 
by 2050 [26].

Drugs have been identified as a modifiable risk factor 
for Alzheimer’s disease [27]. However, while the World 
Health Organization states nine factors that increase the 
risk of developing dementia, drugs are not mentioned [28]. 
Alzheimer’s Disease International counts 12 modifiable risk 
factors for dementia except drug treatment [29]. Similarly, 
frequently cited reference texts or position papers do not 
mention drugs as a possible risk factor for MCI or dementia 
[26, 30, 31].

1.3 � Drug‑Induced Cognitive Impairment in Clinical 
Studies

There is a considerable amount of research on DICI, mainly 
addressing dementia. However, clinical trials and other stud-
ies examining the risk of DICI for certain drug classes often 
yield conflicting results. The main reasons for this are differ-
ent study designs and inappropriate methodology, for exam-
ple, short observation periods and/or the use of screening 
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tools instead of neuropsychological testing. Questionnaires 
and screening tools like the mini mental state examination 
(MMSE) or Montreal cognitive assessment (MoCA) have 
limited sensitivity and specificity. False-positive and, par-
ticularly, false-negative results as well as misclassifications 
are common [32–38].

In addition, only 6.5% of clinical drug trials actively 
assess the cognitive safety of the trial drug [39]. Of these 
few trials, the vast majority uses questionnaires or screen-
ing tools, which increases the risk of not detecting milder 
cognitive impairment, especially in younger or more well-
functioning patients. In addition, it is common practice that 
published safety data from randomised controlled trials 
(RCTs) do not report adverse events that were observed in 
less than five percent of the participants. Thus, systematic 
reviews and meta-analyses using published safety data from 
RCTs are particularly prone to produce negative results on 
DICI. This is important to keep in mind when reading this 
review. Also, study results only apply to the studied popu-
lation as a whole and, usually, to only one drug or drug 
class. However, a negative result on the group level does not 
exclude the possibility of DICI occurring with certain drug 
combinations, in certain subgroups, or in individual patients.

Another limitation of RCTs is the narrow scope of the 
populations studied because of strict inclusion and exclusion 
criteria. This results in a considerably reduced generalis-
ability to the clinical population in real life, which typically 
exhibits greater comorbidity, greater numbers (and other 
types) of comedication, and more pronounced fragility [40]. 
Consequently, patients at higher risk of adverse events may 
be inadequately represented in RCTs. This may explain why 
certain adverse drug reactions have a much higher preva-
lence in real life than in RCTs [41].

From these points, there is reason to suspect that DICI is 
considerably under-recognised. Therefore, the aim of this 
review is to increase awareness. Its focus lies in describ-
ing the various drug classes’ potential to induce cognitive 
impairment, and (possible) underlying mechanisms.

2 � Literature Search Strategy

A comprehensive search strategy using various search 
strings was employed to identify relevant articles, includ-
ing case reports, register studies, cross-sectional studies, 
prospective clinical studies, systematic reviews, and meta-
analyses from electronic databases such as PubMed, Google 
Scholar, and Scopus. Combinations of keywords and phrases 
related to various drug classes and different forms of cog-
nitive impairment were used to retrieve relevant literature. 
The search was not limited by publication date, but newer 
publications were preferred to ensure that this review reflects 

current knowledge. Additionally, reference lists of relevant 
articles were reviewed to identify additional sources.

3 � Drug‑Induced Cognitive Impairment 
According to Drug Class

An overview of different drug classes, the type of associated 
cognitive impairment, and possible underlying mechanisms 
of action is given in Table 1.

3.1 � Antiseizure Medications

Numerous studies have established that antiseizure medica-
tions (ASMs) can impair cognition, even at drug concentra-
tions within the reference range [42–45]. Polypharmacy and 
high ASM blood levels increase the risk. However, epilepsy 
itself is associated with cognitive impairment. Thorough 
neuropsychological testing may be necessary to distinguish 
disease-related cognitive symptoms from DICI [46].

Antiseizure medications commonly regarded as having a 
relatively high risk of cognitive impairment are carbamaz-
epine, clonazepam, ethosuximide, phenobarbital, phenytoin, 
primidone, valproate, topiramate, and zonisamide. They all 
can impair executive functions, attention, processing speed, 
learning, and memory [42, 44, 45]. In addition, the latter 
two ASMs are notorious for their potential to negatively 
affect speech and verbal memory [47, 48]. This distinguishes 
topiramate and zonisamide from other ASMs and gives them 
a specific cognitive profile.

ASMs generally considered as having a small risk of 
cognitive impairment are gabapentin, lacosamide, leveti-
racetam, lamotrigine, oxcarbazepine, and pregabalin [43]. 
For the most recent ASMs there are insufficient data. It must 
be noted that ‘small risk’ does not mean ‘no risk’ as most 
often the risk increases with the dose. However, the latter is 
not always the case. Lamotrigine, for example, is generally 
regarded as cognitively safe or even beneficial for cognition. 
However, case reports describe severe aphasia and rapidly 
progressive dementia-like condition in paediatric and adult 
patients even at low doses [49, 50]. Also, drugs with a small 
risk of cognitive impairment may still have a considerable 
potential to induce a range of other neurologic or psychiatric 
adverse effects. Levetiracetam, for instance, is not known 
to impair cognition. However, it is well known for induc-
ing hostility and aggressive behaviour in both children and 
adults [51].

ASMs affect nerve cell excitation and communication 
by a large variety of molecular mechanisms. Most block 
ion channels or bind to various receptors. Two out of three 
ASMs act by amplifying GABA. Practically all ASMs pos-
sess multiple mechanisms of action and the new ASMs share 
many of their mechanisms with the older ASMs [52, 53]. It 



	 A. Reimers et al.

Ta
bl

e 
1  

O
ve

rv
ie

w
 o

f d
ru

g 
cl

as
se

s, 
as

so
ci

at
ed

 ty
pe

 o
f c

og
ni

tiv
e 

im
pa

irm
en

t, 
po

ss
ib

le
 u

nd
er

ly
in

g 
m

ec
ha

ni
sm

s, 
an

d 
pa

tie
nt

 g
ro

up
s a

t p
ar

tic
ul

ar
ly

 h
ig

h 
ris

k

D
ru

g 
cl

as
s, 

ex
am

pl
e 

dr
ug

s
Ty

pe
 o

f c
og

ni
tiv

e 
im

pa
irm

en
t

Po
ss

ib
le

 m
ec

ha
ni

sm
(s

)
Pa

tie
nt

 g
ro

up
s a

t h
ig

h 
ris

k

A
cu

te
C

hr
on

ic

An
tis

ei
zu

re
 m

ed
ic

at
io

ns
 C

ar
ba

m
az

ep
in

e,
 v

al
pr

oa
te

, c
lo

na
z-

ep
am

, e
th

os
ux

im
id

e,
 p

he
no

ba
rb

i-
ta

l, 
ph

en
yt

oi
n,

 p
rim

id
on

e

Im
pa

ire
d 

at
te

nt
io

n 
an

d 
ex

ec
ut

iv
e 

fu
nc

tio
ns

, d
el

iri
um

Im
pa

ire
d 

at
te

nt
io

n,
 e

xe
cu

tiv
e 

fu
nc

-
tio

ns
, p

ro
ce

ss
in

g 
sp

ee
d,

 le
ar

ni
ng

Re
du

ce
d 

ne
ur

on
al

 e
xc

ita
bi

lit
y 

th
ro

ug
h 

e.
g.

 in
te

ra
ct

io
n 

w
ith

 
vo

lta
ge

-g
at

ed
 io

n 
ch

an
ne

ls
 o

r 
am

pl
ifi

ca
tio

n 
of

 G
A

BA
 e

ffe
ct

s

Pa
tie

nt
s w

ith
 n

eu
ro

lo
gi

c 
or

 p
sy

ch
ia

tri
c 

co
m

or
bi

di
ty

, p
re

-e
xi

sti
ng

 c
og

ni
tiv

e 
im

pa
irm

en
t, 

po
ly

th
er

ap
y,

 o
r h

ig
h 

A
SM

 se
ru

m
 c

on
ce

nt
ra

tio
ns

 T
op

ira
m

at
e,

 z
on

is
am

id
e,

 su
lth

ia
m

e
Im

pa
ire

d 
m

em
or

y 
an

d 
sp

ee
ch

 (e
sp

. 
to

pi
ra

m
at

e,
 z

on
is

am
id

e)
In

hi
bi

tio
n 

of
 c

ar
bo

ni
c 

an
hy

dr
as

e

An
tid

ep
re

ss
an

ts
 T

ric
yc

lic
 a

nt
id

ep
re

ss
an

ts
 (a

m
itr

ip
-

ty
lin

e,
 n

or
tri

pt
yl

in
e,

 c
lo

m
i-

pr
am

in
e,

 d
ox

ep
in

e)

A
ll 

an
tid

ep
re

ss
an

t c
la

ss
es

, p
ar

tic
u-

la
rly

 T
CA

: c
on

fu
si

on
, d

el
iri

um
TC

A
: I

m
pa

ire
d 

le
ar

ni
ng

 &
 m

em
or

y,
 

in
cr

ea
se

d 
ris

k 
of

 M
C

I a
nd

 d
em

en
-

tia

TC
A

: a
nt

ic
ho

lin
er

gi
c 

eff
ec

ts
, b

lo
ck

-
in

g 
of

 h
ist

am
in

e 
re

ce
pt

or
s

A
ll 

an
tid

ep
re

ss
an

ts
: o

ld
er

 a
du

lts

 S
SR

I (
ci

ta
lo

pr
am

, e
sc

ita
lo

pr
am

, 
flu

ox
et

in
e,

 se
rtr

al
in

e,
 p

ar
ox

et
in

e)
SS

R
I: 

Lo
w

 ri
sk

 o
f c

hr
on

ic
 c

og
ni

tiv
e 

si
de

-e
ffe

ct
s b

ut
 re

du
ce

d 
ab

ili
ty

 to
 

ge
ne

ra
lis

e 
le

ar
ne

d 
co

nc
ep

ts

SS
R

I: 
hy

po
na

tre
m

ia
, a

lte
re

d 
hi

p-
po

ca
m

pa
l f

un
ct

io
n

H
yp

on
at

re
m

ia
: w

om
en

 a
t 3

× 
hi

gh
er

 
ris

k 
th

an
 m

en

 N
aS

SA
 (m

ia
ns

er
in

, m
irt

az
ap

in
e)

N
aS

SA
; b

lo
ck

in
g 

of
 h

ist
am

in
e 

re
ce

pt
or

s
 S

N
R

I (
du

lo
xe

tin
e,

 v
en

la
fa

xi
ne

), 
N

D
R

I (
bu

pr
op

io
n)

SN
R

I, 
N

D
R

I: 
re

du
ce

d 
co

gn
iti

ve
 

fle
xi

bi
lit

y
SN

R
I, 

N
D

R
I: 

do
pa

m
in

er
gi

c 
an

d 
no

ra
dr

en
er

gi
c 

ov
er

sti
m

ul
at

io
n

An
tip

ar
ki

ns
on

ia
n 

dr
ug

s
 D

op
am

in
e 

ag
on

ist
s (

pr
am

ip
ex

ol
e,

 
ro

pi
ni

ro
le

)
C

on
fu

si
on

, d
el

iri
um

Fl
uc

tu
at

in
g 

ar
ou

sa
l, 

im
pa

ire
d 

at
te

n-
tio

n,
 in

co
he

re
nt

 v
er

ba
l o

ut
pu

t
D

ist
ur

be
d 

D
1/

D
2 

ba
la

nc
e 

an
d 

do
pa

-
m

in
e/

ac
et

yl
ch

ol
in

e 
ba

la
nc

e
Pa

tie
nt

s w
ith

 e
xi

sti
ng

 c
og

ni
tiv

e 
de

cl
in

e 
an

d 
th

os
e 

w
ith

 a
nt

ic
ho

lin
er

-
gi

c 
co

m
ed

ic
at

io
n

 A
m

an
ta

di
ne

 M
A

O
 in

hi
bi

to
rs

 (s
el

e-
gi

lin
e,

 ra
sa

gi
lin

e)
D

el
iri

um
 (a

m
an

ta
di

ne
 a

nd
 M

A
O

 
in

hi
bi

to
rs

)
U

nk
no

w
n

An
tip

sy
ch

ot
ic

s
 T

yp
ic

al
, e

.g
., 

ha
lo

pe
rid

ol
, fl

up
en

-
tix

ol
, fl

up
he

na
zi

ne
, z

uc
lo

pe
n-

th
ix

ol
 A

ty
pi

ca
l, 

e.
g.

, c
lo

za
pi

ne
, o

la
nz

ap
-

in
e,

 ri
sp

er
id

on
e,

 p
al

ip
er

id
on

e,
 

qu
et

ia
pi

ne
, a

rip
ip

ra
zo

le

A
ll 

an
tip

sy
ch

ot
ic

s:
D

el
iri

um
Re

du
ce

d 
pr

oc
es

si
ng

 sp
ee

d,
 v

er
ba

l 
m

em
or

y,
 e

xe
cu

tiv
e 

fu
nc

tio
ns

, 
at

te
nt

io
n,

 m
ot

iv
at

io
n 

(im
po

rta
nt

 
fo

r l
ea

rn
in

g 
an

d 
pl

an
ni

ng
), 

w
or

k-
in

g 
m

em
or

y,
 im

pu
ls

e 
co

nt
ro

l; 
in

cr
ea

se
d 

ris
k 

of
 d

em
en

tia

A
nt

ic
ho

lin
er

gi
c 

eff
ec

ts
 (s

om
e 

at
yp

ic
al

 a
nt

ip
sy

ch
ot

ic
s)

, a
nt

ih
is

-
ta

m
in

er
gi

c 
an

d 
an

tid
op

am
in

er
gi

c 
eff

ec
ts

, i
nc

re
as

ed
 ri

sk
 o

f m
et

ab
ol

ic
 

sy
nd

ro
m

e,
 re

du
ce

d 
co

rti
ca

l t
hi

ck
-

ne
ss

O
ld

er
 a

du
lts

 (d
ue

 to
 a

ge
-r

el
at

ed
 

fa
ct

or
s a

nd
 th

e 
pr

ev
ai

lin
g 

po
ly

ph
ar

-
m

ac
y)

Li
th

iu
m

 L
ith

iu
m

 c
ar

bo
na

te
, l

ith
iu

m
 c

itr
at

e,
 

lit
hi

um
 su

lfa
te

, l
ith

iu
m

 o
ro

ta
te

A
cu

te
 a

nd
 c

hr
on

ic
: r

ed
uc

ed
 a

le
rtn

es
s a

nd
 a

tte
nt

io
n,

 im
pa

ire
d 

le
ar

ni
ng

, 
re

du
ce

d 
or

ie
nt

at
io

n 
an

d 
vi

su
os

pa
tia

l m
em

or
y,

 d
ys

ph
as

ia
, a

ph
as

ia
, a

ca
lc

u-
lia

, c
on

fu
si

on
, a

nd
 sl

ow
ed

 p
sy

ch
om

ot
or

 fu
nc

tio
n

U
nk

no
w

n.
 M

os
t o

fte
n 

bu
t n

ot
 a

lw
ay

s 
co

rr
el

at
ed

 w
ith

 h
ig

h 
pl

as
m

a 
co

n-
ce

nt
ra

tio
ns

Pa
tie

nt
s o

n 
po

ly
th

er
ap

y 
w

ith
 o

th
er

 
C

N
S-

ac
tiv

e 
dr

ug
s;

 o
ld

er
 a

du
lts

 a
nd

 
ot

he
rs

 w
ith

 re
du

ce
d 

ki
dn

ey
 fu

nc
tio

n 
(e

.g
., 

us
er

s o
f N

SA
ID

s)
Be

nz
od

ia
ze

pi
ne

s a
nd

 Z
-d

ru
gs

 A
lp

ra
zo

la
m

, c
lo

na
ze

pa
m

. l
or

az
-

ep
am

, d
ia

ze
pa

m
, z

op
ic

lo
ne

, 
zo

lp
id

em

D
el

iri
um

, a
nt

er
og

ra
de

 a
m

ne
si

a,
 

Re
du

ce
d 

vi
gi

la
nc

e 
an

d 
ps

yc
ho

m
o-

to
r a

bi
lit

ie
s

Re
du

ce
d 

vi
gi

la
nc

e,
 a

nd
 p

sy
ch

om
o-

to
r a

bi
lit

ie
s, 

in
cr

ea
se

d 
ris

k 
of

 
de

m
en

tia

En
ha

nc
em

en
t o

f G
A

BA
 th

ro
ug

h 
m

od
ul

at
io

n 
of

 G
A

BA
A
-r

ec
ep

to
r 

fu
nc

tio
n

In
di

vi
du

al
s w

ith
 p

re
-e

xi
sti

ng
 c

og
ni

tiv
e 

im
pa

irm
en

t o
r o

th
er

 n
eu

ro
ps

yc
hi

at
-

ric
 c

on
di

tio
ns

 (a
ll 

ag
e 

gr
ou

ps
)



Drug-Induced Cognitive Impairment

Ta
bl

e 
1  

(c
on

tin
ue

d)

D
ru

g 
cl

as
s, 

ex
am

pl
e 

dr
ug

s
Ty

pe
 o

f c
og

ni
tiv

e 
im

pa
irm

en
t

Po
ss

ib
le

 m
ec

ha
ni

sm
(s

)
Pa

tie
nt

 g
ro

up
s a

t h
ig

h 
ris

k

A
cu

te
C

hr
on

ic

O
pi

oi
ds

 T
ra

m
ad

ol
, o

xy
co

do
ne

, h
yd

ro
co

-
do

ne
, m

or
ph

in
e,

 c
od

ei
ne

, 
bu

pr
en

or
ph

in
e,

 fe
nt

an
yl

Sl
ow

ed
 re

ac
tio

n 
tim

e,
 re

du
ce

d 
at

te
n-

tio
n 

an
d 

ps
yc

ho
m

ot
or

 a
bi

lit
ie

s, 
di

stu
rb

ed
 c

on
sc

io
us

ne
ss

, c
on

fu
-

si
on

, d
el

iri
um

Sl
ow

ed
 re

ac
tio

n 
tim

e,
 re

du
ce

d 
at

te
n-

tio
n 

an
d 

ps
yc

ho
m

ot
or

 a
bi

lit
ie

s, 
di

stu
rb

ed
 c

on
sc

io
us

ne
ss

, o
pi

oi
d-

in
du

ce
d 

am
ne

sti
c 

sy
nd

ro
m

e,
 

in
cr

ea
se

d 
ris

k 
of

 d
em

en
tia

In
hi

bi
tio

n 
of

 a
de

ny
ly

l c
yc

la
se

, 
re

du
ce

d 
ne

ur
on

al
 e

xc
ita

bi
lit

y 
th

ro
ug

h 
m

od
ul

at
io

n 
of

 c
al

ci
um

 
an

d 
po

ta
ss

iu
m

 c
ha

nn
el

s, 
bl

oc
k-

ad
e 

of
 N

M
D

A
 re

ce
pt

or
s a

nd
 

ac
et

yl
ch

ol
in

e 
re

ce
pt

or
s, 

re
du

ce
d 

ne
ur

og
en

es
is

 in
 th

e 
hi

pp
oc

am
pu

s, 
ne

ur
on

al
 a

po
pt

os
is

Pa
tie

nt
s w

ith
 e

xi
sti

ng
 c

og
ni

tiv
e 

im
pa

irm
en

t o
r o

th
er

 n
eu

ro
ps

y-
ch

ia
tri

c 
di

so
rd

er
s;

 p
at

ie
nt

s w
ith

 
co

nc
om

ita
nt

 C
N

S-
de

pr
es

sa
nt

 d
ru

gs
; 

ol
de

r a
du

lts

Fi
rs

t-g
en

er
at

io
n 

an
tih

is
ta

m
in

es
 

(s
le

ep
 a

id
s)

 H
yd

ro
xy

zi
ne

, p
ro

m
et

ha
zi

ne
, c

yp
ro

-
he

pt
ad

in
e,

 d
ip

he
nh

yd
ra

m
in

e
Re

du
ce

d 
at

te
nt

io
n 

an
d 

le
ar

ni
ng

, 
de

lir
iu

m
 (p

ro
m

et
ha

zi
ne

)
Re

du
ce

d 
le

ar
ni

ng
, r

ed
uc

ed
 m

em
or

y
B

lo
ck

ad
e 

of
 c

er
eb

ra
l h

ist
am

in
e 

re
ce

pt
or

s a
nd

 a
ce

ty
lc

ho
lin

e 
re

ce
p-

to
rs

O
ld

er
 a

du
lts

, e
sp

ec
ia

lly
 th

os
e 

w
ith

 
co

gn
iti

ve
 im

pa
irm

en
t a

nd
/o

r t
re

at
ed

 
w

ith
 o

th
er

 d
ru

gs
 w

ith
 a

 p
ot

en
tia

l t
o 

in
du

ce
 D

IC
I

D
ru

gs
 fo

r u
ri

na
ry

 in
co

nt
in

en
ce

 
(a

nt
ic

ho
lin

er
gi

cs
)

 T
ol

te
ro

di
ne

, o
xy

bu
ty

ni
n,

 so
lif

-
en

ac
in

D
el

iri
um

Im
pa

ire
d 

le
ar

ni
ng

 a
nd

 m
em

or
y,

 
de

lir
iu

m
, i

nc
re

as
ed

 ri
sk

 o
f 

de
m

en
tia

B
lo

ck
ad

e 
of

 c
er

eb
ra

l m
us

ca
rin

ic
 

ac
et

yl
ch

ol
in

e 
re

ce
pt

or
s

O
ld

er
 a

du
lts

, e
sp

ec
ia

lly
 th

os
e 

w
ith

 
co

gn
iti

ve
 im

pa
irm

en
t a

nd
/o

r p
ol

y-
th

er
ap

y
Pr

ot
on

 p
um

p 
in

hi
bi

to
rs

 O
m

ep
ra

zo
le

, e
so

m
ep

ra
zo

le
, l

an
so

-
pr

az
ol

e,
 p

an
to

pr
az

ol
e

D
el

iri
um

In
cr

ea
se

d 
ris

k 
of

 d
em

en
tia

H
yp

on
at

ra
em

ia
, i

nh
ib

iti
on

 o
f 

ch
ol

in
e 

ac
et

yl
tra

ns
fe

ra
se

, r
ed

uc
ed

 
ab

so
rp

tio
n 

of
 v

ita
m

in
 B

12
 b

ec
au

se
 

of
 st

om
ac

h 
an

ac
id

ity
, i

nd
uc

tio
n 

of
 e

nd
ot

he
lia

l d
ys

fu
nc

tio
n 

le
ad

-
in

g 
to

 c
ar

di
ov

as
cu

la
r d

am
ag

e 
in

 
th

e 
br

ai
n,

 in
hi

bi
tio

n 
of

 c
ar

bo
ni

c 
an

hy
dr

as
e

G
er

ia
tri

c 
pa

tie
nt

s, 
pa

rti
cu

la
rly

 
th

os
e 

w
ith

 p
re

-e
xi

sti
ng

 c
og

ni
tiv

e 
im

pa
irm

en
t a

nd
/o

r a
nt

ic
ho

lin
er

gi
c 

co
m

ed
ic

at
io

n

G
lu

co
co

rt
ic

oi
ds

 P
re

dn
is

on
e,

 p
re

dn
is

ol
on

e,
 tr

ia
m

ci
-

no
lo

ne
, b

et
am

et
ha

so
ne

D
el

iri
um

Im
pa

ire
d 

at
te

nt
io

n,
 im

pa
ire

d 
ex

ec
u-

tiv
e 

fu
nc

tio
ns

, i
m

pa
ire

d 
m

em
or

y,
 

de
m

en
tia

Re
ve

rs
ib

le
 h

ip
po

ca
m

pa
l i

m
pa

ir-
m

en
t (

sh
or

t-t
er

m
 e

xp
os

ur
e 

to
 h

ig
h 

do
se

s)
; i

rr
ev

er
si

bl
e 

ne
ur

on
al

 d
ea

th
 

an
d 

pe
rm

an
en

t h
ip

po
ca

m
pa

l d
am

-
ag

e 
(c

hr
on

ic
 e

xp
os

ur
e)

O
ld

er
 a

du
lts

, b
ut

 in
di

vi
du

al
s b

el
ow

 6
5 

ye
ar

s o
f a

ge
 m

ay
 a

ls
o 

be
 a

ffe
ct

ed

N
on

-s
te

ro
id

al
 a

nt
i-i

nfl
am

m
at

or
y 

dr
ug

s (
N

SA
ID

s)
 M

el
ox

ic
am

, d
ic

lo
fe

na
c,

 n
ap

ro
xe

n,
 

ib
up

ro
fe

n,
 k

et
or

ol
ac

, c
el

ec
ox

ib
A

cu
te

 d
em

en
tia

 (r
ar

e)
, d

el
iri

um
 

(r
ar

e)
In

cr
ea

se
d 

ris
k 

of
 d

em
en

tia
C

er
eb

ra
l h

yp
op

er
fu

si
on

 th
ro

ug
h 

va
so

co
ns

tri
ct

io
n 

an
d/

or
 th

ro
m

bo
-

ph
ili

a;
 m

ic
ro

str
ok

es

O
ld

er
 a

du
lts

, e
sp

ec
ia

lly
 th

os
e 

w
ith

 
an

tic
ho

lin
er

gi
c 

co
m

ed
ic

at
io

n



	 A. Reimers et al.

Ta
bl

e 
1  

(c
on

tin
ue

d)

D
ru

g 
cl

as
s, 

ex
am

pl
e 

dr
ug

s
Ty

pe
 o

f c
og

ni
tiv

e 
im

pa
irm

en
t

Po
ss

ib
le

 m
ec

ha
ni

sm
(s

)
Pa

tie
nt

 g
ro

up
s a

t h
ig

h 
ris

k

A
cu

te
C

hr
on

ic

St
at

in
s

 A
to

rv
as

ta
tin

, s
im

va
st

at
in

, r
os

uv
as

-
ta

tin
, p

ra
va

st
at

in
C

on
fu

si
on

, a
m

ne
si

a
D

em
en

tia
-li

ke
 c

on
di

tio
ns

Im
pa

ire
d 

ce
ll 

m
em

br
an

e 
fu

nc
-

tio
n,

 im
pa

ire
d 

m
ye

lin
 fu

nc
tio

n,
 

de
cr

ea
se

d 
ch

ol
es

te
ro

l i
n 

th
e 

hi
p-

po
ca

m
pu

s, 
re

du
ce

d 
sy

nt
he

si
s o

f 
co

en
zy

m
e 

Q
10

El
de

rly
 p

at
ie

nt
s, 

es
pe

ci
al

ly
 th

os
e 

w
ith

 
pr

e-
ex

ist
in

g 
co

gn
iti

ve
 im

pa
irm

en
t; 

th
os

e 
w

ith
 o

th
er

 m
em

or
y-

aff
ec

tin
g 

co
m

ed
ic

at
io

n

An
tih

yp
er

te
ns

iv
es

 a
nd

 d
ru

gs
 w

ith
 

hy
po

te
ns

iv
e 

eff
ec

ts
 A

C
E 

in
hi

bi
to

rs
, A

T2
 a

nt
ag

on
ist

s, 
ca

lc
iu

m
 b

lo
ck

er
s, 

β-
bl

oc
ke

rs
, 

di
ur

et
ic

s, 
ni

tra
te

s, 
tri

cy
cl

ic
 

an
tid

ep
re

ss
an

ts
, a

nt
ip

sy
ch

ot
ic

s, 
do

pa
m

in
er

gi
c 

an
tip

ar
ki

ns
on

ia
n 

dr
ug

s, 
be

nz
od

ia
ze

pi
ne

s, 
op

io
id

s, 
SG

LT
-2

 in
hi

bi
to

rs

C
on

fu
si

on
C

og
ni

tiv
e 

de
fic

its
 in

 v
ar

io
us

 
do

m
ai

ns
 (m

ai
nl

y 
ex

ec
ut

iv
e 

an
d 

m
em

or
y 

fu
nc

tio
ns

; d
em

en
tia

-li
ke

 
co

nd
iti

on
s

W
hi

te
 a

nd
 g

re
y 

m
at

te
r d

am
ag

e 
th

ro
ug

h 
ce

re
br

al
 h

yp
op

er
fu

si
on

/ 
is

ch
ae

m
ia

Pa
tie

nt
s w

ith
 o

rth
os

ta
tic

 h
yp

ot
en

si
on

C
he

m
ot

he
ra

pe
ut

ic
 a

ge
nt

s
 M

et
ho

tre
xa

te
, m

er
ca

pt
op

ur
in

e,
 

5-
flu

or
ou

ra
ci

l, 
ge

m
ci

ta
bi

ne
, 

cy
cl

op
ho

sp
ha

m
id

e,
 d

ox
or

ub
ic

in
, 

ci
sp

la
tin

, p
ac

lit
ax

el
, i

nt
er

fe
ro

n

A
cu

te
 a

nd
 lo

ng
-te

rm
 c

og
ni

tiv
e 

im
pa

irm
en

t, 
es

pe
ci

al
ly

 im
pa

ire
d 

at
te

nt
io

n,
 

m
em

or
y,

 e
xe

cu
tiv

e 
fu

nc
tio

ns
 a

nd
 p

ro
ce

ss
in

g 
sp

ee
d,

 e
ve

n 
m

on
th

s a
fte

r l
as

t 
tre

at
m

en
t

In
du

ct
io

n 
of

 p
ro

in
fla

m
m

at
or

y 
cy

to
ki

ne
s a

nd
 in

fla
m

m
at

io
n-

re
la

te
d 

ox
id

at
iv

e 
str

es
s, 

da
m

ag
e 

to
 

th
e 

bl
oo

d–
br

ai
n 

ba
rr

ie
r, 

de
cr

ea
se

d 
hi

pp
oc

am
pa

l n
eu

ro
ge

ne
si

s

Pa
tie

nt
s w

ith
 C

N
S 

tu
m

ou
rs

; t
ho

se
 

w
ith

 a
dv

an
ce

d 
ca

nc
er

; t
ho

se
 w

ith
 

ps
yc

ho
ac

tiv
e 

m
ed

ic
at

io
ns

 su
ch

 a
s 

op
io

id
s, 

be
nz

od
ia

ze
pi

ne
s, 

co
rti

-
co

ste
ro

id
s, 

et
c.

; e
ld

er
ly

 p
at

ie
nt

s, 
es

pe
ci

al
ly

 th
os

e 
w

ith
 d

em
en

tia

Fo
r d

et
ai

le
d 

in
fo

rm
at

io
n 

an
d 

re
fe

re
nc

es
, p

le
as

e 
se

e 
ar

tic
le

 te
xt

AS
M

 a
nt

is
ei

zu
re

 m
ed

ic
at

io
n,

 D
IC

I d
ru

g-
in

du
ce

d 
co

gn
iti

ve
 im

pa
irm

en
t, 

M
AO

 m
on

oa
m

in
e 

ox
id

as
e,

 N
aS

Sa
 n

or
ad

re
ne

rg
ic

 a
nd

 sp
ec

ifi
c 

se
ro

to
ne

rg
ic

 a
nt

id
ep

re
ss

an
ts

, N
D

RI
 n

or
ad

re
na

lin
e 

an
d 

do
pa

-
m

in
e 

re
up

ta
ke

 in
hi

bi
to

rs
, S

N
RI

 se
ro

to
ni

n 
an

d 
no

ra
dr

en
al

in
e 

re
up

ta
ke

 in
hi

bi
to

rs
, S

SR
I s

el
ec

tiv
e 

se
ro

to
ni

n 
re

up
ta

ke
 in

hi
bi

to
rs

, T
CA

​ tr
ic

yc
lic

 a
nt

id
ep

re
ss

an
ts



Drug-Induced Cognitive Impairment

is therefore difficult to ascribe their cognitive effects—or 
lack thereof—to a specific mechanism of action. It is note-
worthy, though, that only topiramate, zonisamide, and sulthi-
ame inhibit carbonic anhydrase and all three drugs impair 
cognition, especially verbal memory [53, 54].

Acute and chronic effects: Usually, symptoms of cogni-
tive impairment by ASMs develop gradually over weeks to 
months. However, patients may present with various acute 
cognitive symptoms at any time after treatment initiation, 
such as considerably reduced executive functions, apha-
sia, delirium, and even neurological symptoms resembling 
stroke, especially after rapid dose titration or after substan-
tial dose increases [55–57].

Patient groups at high risk: Patients with neurologic or 
psychiatric comorbidity, pre-existing cognitive impairment, 
polytherapy, or high ASM serum concentrations (possi-
ble even at normal doses if an ASM is combined with an 
enzyme inhibitor).

3.2 � Antidepressants

Depression is associated with reduced cognitive function 
in several cognitive domains. It can therefore be difficult to 
distinguish such cognitive impairment from adverse drug 
effects. While many studies did not find an increased risk of 
dementia with antidepressant use or even beneficial effects, 
other studies did [58–61]. Moreover, as mentioned above, 
DICI is not only manifest dementia.

Tricyclic antidepressants are well known for their nega-
tive impact on cognition. This is usually ascribed to their 
strong anticholinergic properties. However, tricyclics also 
have considerable antihistaminergic properties. It is well-
known that blocking cerebral histamine receptors, especially 
the H1-receptor, induces sedation and sleepiness which inev-
itably impairs attention and cognitive speed. The role of his-
tamine in the pathogenesis and pharmacological treatment 
of depression has recently gained attention [62]. However, 
aside from its role in the sleep-wake rhythm, histamine also 
has an important role in cognitive functioning [63]. Blocking 
of these receptors by tricyclic antidepressants may therefore 
contribute to their negative cognitive effects. The American 
Geriatrics Society recommends that tricyclics (plus parox-
etine, a selective serotonin reuptake inhibitor [SSRI] with 
anticholinergic properties) be avoided in older patients [64].

Non-tricyclic, modern antidepressants have long been 
regarded as either cognition neutral or cognition improv-
ing [65, 66]. However, it is unclear whether the latter is a 
direct effect. As depression itself is generally associated 
with impaired cognition, including dementia-like conditions, 
relieving a person from depression may improve their cogni-
tive problems as well. Moreover, newer research indicates 
that cognitive impairment is common during treatment with 
newer antidepressants and that it may resemble adverse drug 

effects rather than residual symptoms of depression [67–71]. 
This notion is supported by the observation that SSRIs may 
impair cognitive function even in healthy subjects [72].

Modern antidepressants may induce cognitive impair-
ment by various mechanisms. Practically all classes of 
antidepressants, including tricyclics, commonly induce 
hyponatraemia, a condition that leads to various neurologi-
cal symptoms including confusion, cognitive impairment 
and delirium [73–75].

Paroxetine, an SSRI, can induce cognitive impairment 
through its strong anticholinergic properties [64, 76, 77] and 
deteriorate hippocampal functioning, possibly by induction 
of excessive neurogenesis in the dentate gyrus which pro-
duces cells that behave differently from those cells naturally 
generated in the dentate gyrus [78].

Noradrenergic and specific serotonergic antidepressants 
(NaSSAs) like mianserin and mirtazapine are known to 
produce fatigue and may impair attention, speed and visu-
ospatial ability through their pronounced antihistaminergic 
properties [79–81]. Mianserin produced slowed reaction 
time and reduced psychomotor function in healthy subjects 
while mirtazapine may reduce driving ability [82–84].

The positive effects of dopamine and norepinephrine 
on cognition (in patients with ADHD) follow an inverse 
U-shaped dose–effect curve, meaning that too much stimu-
lation may impair cognition, particularly cognitive flexibil-
ity. This has been demonstrated for central stimulants like 
methylphenidate or amphetamine [85, 86]. Because of their 
strong pharmacological similarities with central stimulants, 
it may also apply to noradrenaline and dopamine-enhancing 
antidepressants, that is, noradrenaline and dopamine reup-
take inhibitors (NDRIs) like bupropion as well as serotonin 
and noradrenaline reuptake inhibitors (SNRIs) like venlafax-
ine or duloxetine (the latter two drugs also block the reup-
take of dopamine) [87–89].

Acute and chronic effects: Anticholinergic cognitive 
effects (mainly memory-related) and antihistaminer-
gic effects (mainly sedation and impaired learning) may 
manifest within days after start of treatment. Symptoms of 
dopaminergic/noradrenergic overstimulation in the form 
of reduced cognitive flexibility may occur within days to 
weeks. Hyponatraemia, often leading to acute symptoms like 
confusional state or delirium, may occur at any time after 
treatment initiation—one study reported a median time to 
onset of hyponatraemia of 13 days, ranging from 3 to 120 
days [90].

Patient groups at high risk: Older adults are particularly 
susceptible to DICI by antidepressants. Women appear to be 
at a two to three times higher risk for antidepressant-induced 
hyponatraemia than men [90, 91].
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3.3 � Antiparkinsonian Drugs

The loss of dopamine in Parkinson’s disease often causes 
cognitive decline and in some, Parkinson dementia. Without 
neuropsychological testing, it can be demanding to distin-
guish disease-related cognitive impairment from DICI [35]. 
Parkinson’s disease is commonly treated with dopaminergic 
drugs and, sometimes, anticholinergic drugs like trihexyphe-
nidyl, biperiden or benztropine.

The deleterious effects of anticholinergic drugs on cog-
nition are undisputed and reviewed elsewhere in this paper 
[64, 92].

Dopaminergic drugs comprise L-DOPA, dopamine ago-
nists as well as monoamine oxidase (MAO) and catechol-
O-methyltransferase (COMT) inhibitors. While there is 
much focus on psychiatric and behavioural adverse effects of 
dopaminergic treatment, DICI is less recognised. L-DOPA, 
unlike common dopamine D2/D3 agonists, can enhance 
learning, working memory, and executive functions. This 
has been ascribed to the fact that dopamine binds to both D1 
and D2 receptors whereas dopamine agonists mainly bind to 
D2 and D3 receptors [93]. D1 receptors, involved in phasic 
dopaminergic stimulation, are crucial for things like working 
memory and learning. This may explain why L-DOPA has 
a cognition-improving effect while dopamine agonists do 
not. To the contrary, several studies suggest that dopamine 
agonists, either in monotherapy or combined with L-DOPA, 
might impair cognitive function after a single dose [94–98]. 
However, both L-DOPA and dopamine agonists can induce 
confusional or delirious states with fluctuating arousal, 
impaired attention, and incoherent verbal output, especially 
in combination with anticholinergic drugs. Frequencies of 
5–25% have been reported, and the risk is higher with dopa-
mine agonists than with L-DOPA [22, 99]. Delirium is also 
common with amantadine or MAO inhibitors [99].

As dopaminergic treatment can induce psychotic and 
obsessive-compulsive symptoms as well as reduced impulse 
control, treatment with antipsychotics may become neces-
sary. Among the most used antipsychotics in Parkinson’s 
disease are clozapine and quetiapine, mainly because of their 
weak antidopaminergic properties. However, clozapine has 
strong anticholinergic and antihistaminic effects. Quetiapine 
has weaker anticholinergic effects but has pronounced anti-
histaminic properties. This may explain the observed impair-
ments in processing speed, verbal memory, and executive 
functions with these drugs, even at normal doses [100–105]. 
However, these findings possibly do not apply to patients 
with Parkinson’s disease as effective doses and serum con-
centrations usually are far below those used in schizophrenia 
and related disorders [106].

Acute and chronic effects: Dopamine agonists may impair 
cognitive function at any time. Usually, these effects develop 

gradually over weeks. However, in healthy subjects they 
were observed after a single therapeutic dose.

Patient groups at high risk: Patients with existing cogni-
tive decline and those with anticholinergic comedication.

3.4 � Antipsychotics

Schizophrenia and schizoaffective disorders are associated 
with a wide range of cognitive impairment which may make 
it difficult to assess possible negative effects of antipsychotic 
drug treatment on cognition [107]. In parallel with depres-
sion, treating the underlying disease often improves cogni-
tive function, but antipsychotics may also exert detrimental 
effects on cognition, even at low doses [108].

Antipsychotics bind to a variety of receptors including 
dopamine, norepinephrine, serotonin, histamine, and mus-
carinic acetylcholine receptors. Second-generation antipsy-
chotics do so with great variation in affinity, which gives 
each of these drugs a distinct receptor profile [109].

Typical or first-generation antipsychotics all have strong 
dopamine D2-antagonistic properties. Dopamine plays an 
important role in cognition and is involved in, for example, 
attention, motivation (important for learning and planning), 
working memory, processing speed, and impulse control 
[85]. Cognitive adverse effects of typical antipsychotics 
have been documented in animal models, healthy subjects, 
and patients with schizophrenia [110]. Chlorpromazine and 
thioridazine, in addition, have strong anticholinergic and 
antihistaminergic properties which impair processing speed 
and memory functions. Other first-generation antipsychotics 
do not have noteworthy anticholinergic effects.

Atypical or second-generation antipsychotics also block 
dopamine D2 receptors, although with lower affinity, and 
some of them only as partial antagonists. They typically bind 
with varying affinity to different serotonin (5-HT) receptors, 
thereby modifying dopaminergic neurotransmission [109, 
111].

Clozapine, quetiapine (see Sect. 3.3 Antiparkinsonian 
Drugs), and olanzapine also have strong anticholinergic 
properties. This gives them not only the potential to impair 
cognition, particularly memory functions, but also a poten-
tial to induce acute delirium. Olanzapine and quetiapine, in 
addition, exert strong antihistaminic effects which explains 
why they are used as sedatives, usually at doses lower than 
antipsychotic doses. The combination of antidopaminergic 
and anticholinergic properties, even without antihistaminer-
gic effects, increases the cognitive risk [112–115]. A retro-
spective study with over 300,000 patients found that atypical 
antipsychotics increased the risk of developing Alzheimer’s 
disease by 24% [116].

Aside from their effects on dopaminergic, cholinergic, 
and histaminergic neurotransmission, antipsychotics may 
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impair cognition by several other mechanisms. Atypical 
antipsychotics have a demonstrated potential to induce meta-
bolic syndrome. Obesity is associated with impaired insulin 
regulation, hyperlipidaemia, and vascular damage, factors 
known to decrease cognitive function [117, 118].

Several studies, among them double-blind, placebo-con-
trolled ones, found significantly reduced cortical thickness 
after treatment with antipsychotics, especially in the pre-
frontal cortex [119–124]. The underlying mechanisms are 
unclear. While vascular damage may lead to an undersupply 
of nutrients and oxygen, some data also point to altered reg-
ulation of gene expression (i.e., epigenetic changes) [125]. 
Interestingly, cortical thinning was positively correlated with 
higher cumulative intake of typical antipsychotics but less 
with atypical antipsychotics [126]. This may be caused by 
the atypical antipsychotics’ interference with cholesterol 
metabolism as cholesterol is essential for the myelination of 
both white and grey matter [121].

Acute and chronic effects: Acute cognitive impair-
ment due to antihistaminergic effects (mainly sedation 
and impaired learning) and anticholinergic effects (mainly 
impaired memory) may occur at any time after start of treat-
ment. Antipsychotics, particularly atypical ones with strong 
anticholinergic effects, can induce acute delirium. Chronic 
treatment increases the risk of developing dementia.

Patient groups at high risk: Older adults (due to age-
related factors and the prevailing polypharmacy).

3.5 � Lithium

Lithium is a chemical element. While there are several 
hypotheses on how it may exert its therapeutic effects, it is 
not exactly known by which molecular mechanisms it does 
so [127]. Adverse effects of lithium are well described in the 
literature [128]. Regarding cognition, data are conflicting. 
Many studies found a neuroprotective and cognition-enhanc-
ing effect of lithium while other studies and case reports sug-
gest that lithium can impair cognition even at normal plasma 
concentrations and without other signs of lithium toxicity 
[127, 129–134]. Symptoms are highly variable, acute or 
chronic, and may include reduced alertness and attention, 
impaired learning, reduced orientation and visuospatial 
memory, dysphasia, aphasia, acalculia, confusion, slowed 
psychomotor function, or acute delirium. If such symptoms 
manifest despite normal lithium blood levels, an EEG may 
reveal lithium toxicity [135].

Acute and chronic effects: Acute lithium-induced DICI 
due to high serum concentration may occur at any time dur-
ing treatment and is usually accompanied by other neuro-
logical symptoms. However, lithium-related DICI despite 
normal serum concentration and chronic cognitive impair-
ment lasting for months or years has also been reported [133, 
134, 136].

Patient groups at high risk: Patients on polytherapy with 
other CNS-active drugs; older adults and other patients with 
reduced kidney function including users of NSAIDs.

3.6 � Benzodiazepines and Z‑Drugs

These drugs amplify physiological GABAergic neurotrans-
mission through modulation of the GABAA receptor. This 
induces anxiolytic effects, reduced vigilance and psycho-
motor abilities, sedation, and sleepiness [137, 138]. It can 
also induce anterograde amnesia [139, 140]. Such effects 
may impair various cognitive domains, especially in the 
elderly [141–143]. Dementia-like states have been reported 
[144–146]. Administration of benzodiazepines to older 
adults hospitalised after major surgery is associated with 
increased postoperative delirium [147]. Even if only taken 
at bedtime, the long half-life of common benzodiazepines 
produces pharmacologically relevant plasma levels during 
daytime. The American Geriatrics Society recommends for 
various reasons that these drugs be avoided in the elderly, 
including the risk of falls [64]. Z-drugs are used as hypnot-
ics, meaning they are only taken at bedtime. They have much 
shorter half-lives than common benzodiazepines (1–5 h 
vs 6 to >24 h), and therefore the risk of being cognitively 
impaired in the daytime is considerably lower [138, 148]. 
However, the American Geriatrics Society recommends 
avoiding their use in older patients for the same reasons as 
benzodiazepines [64].

Acute and chronic effects: In drug-naïve subjects, the cog-
nitive effects of benzodiazepines and Z-hypnotics may mani-
fest after a single dose. Administration of benzodiazepines to 
hospitalised older adults is associated with a significant risk 
of delirium. With chronic treatment, most people develop 
some degree of tolerance. However, chronic treatment may 
have a cumulative negative effect on cognitive function and 
is associated with an increased risk of developing dementia 
[145, 146].

Patient groups at high risk: People with pre-existing cog-
nitive impairment or other neuropsychiatric conditions (all 
age groups).

3.7 � Opioids

Like other neurological and psychiatric conditions, pain 
itself is associated with impaired cognition, which can 
make it difficult to identify DICI, especially its milder forms 
[149]. However, it is well documented that opioids can pro-
duce slowed reaction time, reduced psychomotor abilities, 
reduced attention, disturbed consciousness, confusion, or 
delirium [36, 150–152]. This can occur at normal doses, 
and even when administered as a patch [153]. These symp-
toms are often accompanied by psychiatric symptoms such 
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as anxiety or hallucinations. A well-known phenomenon 
is postoperative confusion or delirium. Many patients who 
wake up after surgery are confused and disorientated for 
some time, but reduced verbal recall and impaired arithmetic 
fluency have also been reported [154]. Opioid use outside 
clinical settings increases the risk of workplace accidents 
[155]. Recently, opioid-induced amnestic syndrome has 
emerged as a complication of opioid abuse. It has mainly 
been reported with fentanyl and is associated with hip-
pocampal damage, but other cortical and subcortical struc-
tures like the basal ganglia or the cerebellum are also often 
involved [156–158].

Opioids exert their pain-relieving effect mainly through 
binding to opioid receptors in the CNS. These receptors are 
coupled to inhibitory G-proteins. All three major receptor 
subtypes (µ, κ, and δ) thus inhibit adenylyl cyclase, thereby 
disrupting certain intracellular signalling pathways and 
decreasing intracellular energy levels. In addition, opioids 
modulate calcium and potassium channels and produce 
hyperpolarisation which prevents neuronal excitation and 
propagation of action potentials [159, 160]. Besides bind-
ing to opioid receptors and ion channels, opioids also block 
glutamatergic NMDA receptors and muscarinic acetylcho-
line receptors [160, 161]. These mechanisms of action may 
explain their analgesic effect as well as their sedative proper-
ties and their negative effects on cognition [162].

Cognitive effects of long-term opioid use are less well 
studied than acute effects, but there are some experimental 
and clinical data. For example, several studies have shown 
that opioids reduce neurogenesis in the hippocampus (for 
a review, see [163]). Prolonged, but not acute, exposure 
to morphine may induce neuronal apoptosis [164]. While 
most clinical studies did not find any effect of opioids on 
the risk of developing dementia, newer studies, including 
controlled prospective and paediatric studies, have shown 
a slightly to considerably increased risk [165–168]. A large 
Danish register-based study found that new opioid use in 
older adults with dementia is associated with a significantly 
increased risk of death, including an 11-fold increase in the 
first 2 weeks [169].

Acute and chronic effects: See preceding text.
Patient groups at high risk: Patients with existing cogni-

tive impairment or other neuropsychiatric disorders; patients 
with concomitant CNS-depressant drugs; older adults.

3.8 � First‑Generation Antihistamines (Sleeping Aids)

First-generation antihistamines, such as hydroxyzine, pro-
methazine, cyproheptadine or diphenhydramine, have pro-
found sedating effects that are therapeutically used in sleep-
ing disorders. However, these drugs have long half-lives, 
and even if taken at bedtime, they may exert their effects at 
daytime as well, often producing drowsiness. The effect is 

mediated by blockade of central H1 receptors. Drowsiness 
alone may affect cognition. In addition, histamine as a neu-
rotransmitter is not only important for keeping us awake, 
but also plays a central role in cognition, especially learn-
ing [63]. Besides that, several first-generation antihistamines 
have strong anticholinergic properties. The combination of 
antihistaminic and anticholinergic effects resembles a high 
risk of cognitive impairment, particularly reduced learning 
and memory [170, 171]. These drugs should be avoided in 
the elderly [64].

Acute and chronic effects: Sedation and consecutive nega-
tive cognitive effects such as reduced attention may manifest 
after one dose. Chronic treatment may lead to direct and 
long-lasting negative effects on learning and memory.

Patient groups at high risk: Older adults, especially those 
with cognitive impairment and/or treated with other drugs 
with a potential to induce DICI.

3.9 � Drugs for Urinary Incontinence

Traditionally, drugs for urinary incontinence act by block-
ing muscarinergic M3 receptors on the urine bladder, thus 
reducing smooth muscle tone. Tolterodine, oxybutynin, 
and solifenacin are common representatives of this drug 
class. They pass through the blood–brain barrier and bind 
to neuronal M1 and M3 receptors with similar affinity as to 
peripheral M3 receptors [172]. As these receptors are pre-
dominantly found in the cortex and the hippocampus, their 
blocking impairs cognitive functions, particularly memory 
functions (learning and retrieval), and may lead to dementia-
like conditions.

These drugs are classified as drugs with a high anticho-
linergic burden which means their use poses a high risk of 
cognitive impairment, delirium, and the development of 
dementia including Alzheimer’s [171, 173–177]. The risk 
of dementia increases with greater exposure, possibly even 
15–20 years before a diagnosis. However, some studies did 
not find negative cognitive effects. These studies tended to 
have shorter follow-up periods or were cross-sectional stud-
ies [176].

These drugs should be avoided in the elderly because of 
their recognised potential to induce cognitive impairment 
including delirium and dementia [64]. Despite such rec-
ommendations from the American Geriatrics Society and 
others, nearly one-third of dementia patients have urinary 
incontinence and over one-fourth of them use antimuscarinic 
drugs [178]. Because of these drugs' potential to impair cog-
nition (and other bothersome anticholinergic adverse effects 
such as dry mouth etc.), a different class of drugs for urinary 
incontinence has been developed—β-3-receptor agonists like 
mirabegron. According to current (limited) knowledge, they 
do not affect cognition negatively [179].
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Acute and chronic effects: Acute delirium may manifest 
as early as 1 week after treatment initiation but may occur at 
any time during treatment [180]. Non-acute cognitive effects 
often start to develop gradually after several weeks of treat-
ment but may manifest earlier or later than that.

Patient groups at high risk: Older adults, especially those 
with cognitive impairment and/or polytherapy. However, 
even adults younger than 65 years may experience memory 
problems.

3.10 � Proton Pump Inhibitors

Proton pump inhibitors (PPIs) are notoriously overpre-
scribed, and in many countries, they can be purchased with-
out a prescription [181]. It is not uncommon that patients 
use these drugs for years. Most meta-analyses did not find 
conclusive evidence for negative cognitive effects of PPIs. 
However, one recent, large prospective study demonstrated 
a 33% increased risk of dementia after use of PPIs for 4.4 
years or more [182]. This suggests that cognitive impairment 
by PPIs is a chronic effect and implies a role of cumulative 
dose. The results of this study are in agreement with natural-
istic studies that found a 44–170% risk increase for cognitive 
impairment including dementia, dependent on population, 
comorbidity, and treatment duration [183–186]. Various 
mechanisms may be responsible for this, the most impor-
tant one being strong inhibition of cholinacetyltransferase, 
the enzyme that synthesises acetylcholine. PPIs inhibit this 
enzyme with high selectivity and high potency, and at con-
centrations far below their therapeutic plasma and brain 
concentrations [187]. A second important mechanism may 
be the reduced absorption of vitamin B12 because of the 
anacidity of the stomach [188, 189]. Vitamin B12 plays an 
important role in neuronal health and has been implied in 
the pathogenesis of Alzheimer’s disease [190]. Yet another 
possible mechanism is the induction of endothelial dysfunc-
tion which may lead to cardiovascular damage in the brain 
[191]. Further, PPIs inhibit carbonic anhydrase [192, 193]. 
Antiseizure medications that inhibit carbonic anhydrase are 
well known for their pronounced negative effects on cogni-
tion, especially verbal memory (see Sect. 3.1 Antiseizure 
Medications), while carbonic anhydrase activators are cur-
rently being researched for possible neuroprotective effects 
[194]. Finally, PPIs can induce acute delirium via dis-
turbed electrolyte homeostasis such as hypomagnesaemia, 
hyponatraemia, or hypokalaemia. This may occur after only 
one day of treatment [195–197]. It is likely, though, that the 
anticholinergic effects described herein play a causal role in 
delirium as well.

Acute and chronic effects: One study found that use of 
PPIs was associated with a 67% increased risk of developing 
delirium in geriatric patients [198]. Long-term treatment is 
associated with an increased risk of developing dementia.

Patient groups at high risk: Older adults, particularly 
those with pre-existing cognitive impairment and/or anticho-
linergic comedication.

3.11 � Glucocorticoids

Elevated cortisol levels are involved in the pathogenesis of 
delirium, dementia, and age-related cognitive decline. Cer-
ebral atrophy, sometimes irreversible, has long been known 
as a consequence of treatment with steroids, particularly 
high-dose treatment [199, 200]. The hippocampus has a 
high density of glucocorticoid receptors. While short-term 
exposure to high levels of glucocorticoids may cause revers-
ible hippocampal impairment, chronic exposure may lead 
to irreversible neuronal death and permanent hippocampal 
damage [201–204]. Accordingly, patients receiving chronic 
treatment with glucocorticoids have reduced hippocampal 
volumes and exhibit declarative memory deficits [205]. 
Negative effects on cognition, particularly memory func-
tions, have also been reported in children [206]. Aside from 
impaired memory functions, executive functions and atten-
tion may also be negatively affected [22].

Varney et al. coined the term steroid dementia in their 
1984 report on six patients (25–65 years old) that experi-
enced dementia without psychotic symptoms while being 
treated with glucocorticoids [207]. Since then, glucocor-
ticoid-induced cognitive impairment, often mimicking 
Alzheimer’s, has repeatedly been reported in the literature. 
Reversal of these symptoms may take from a few weeks to 
almost a year after stopping treatment [19, 22, 208–210].

Acute delirium is common with glucocorticoid treatment. 
A meta-analysis of 49 studies found that 16% of patients 
develop delirium [211].

Despite these well documented effects, a recent meta-
analysis of 43 RCTs with glucocorticoids found that only 
one of them looked at possible treatment-emergent cognitive 
impairment, in line with the recent finding that cognitive 
safety is largely ignored in RCTs. By contrast, more than 
half of 22 studies designed to examine adverse cognitive 
effects of glucocorticoids reported impaired cognition, pre-
dominantly memory-related functions (indicating hippocam-
pal damage) [39, 210].

Patient groups at high risk: Older adults, but individuals 
below 65 years of age may also be affected.

3.12 � Non‑Steroidal Anti‑Inflammatory Drugs 
(NSAIDs)

Non-steroidal anti-inflammatory drugs (NSAIDs) may pro-
duce cognitive adverse reactions after a single dose [212, 
213]. Interestingly, NSAIDs have been extensively studied 
as potential protective agents against cognitive decline. For 
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various reasons, the results of these studies have been mixed 
[214].

Only few studies examined if NSAIDs may induce DICI, 
and they focused on manifest dementia only. One large study 
enrolled 2736 dementia-free participants with extensive 
pharmacy data even from before enrolment and then fol-
lowed them every other year for up to 12 years. Compared 
with nonusers and light users, heavy NSAID users had an 
increased occurrence of dementia (1.7-fold increased) and 
Alzheimer’s disease (1.6-fold increased) [214]. Heavy use 
was defined as at least 500 prescribed daily doses within 2 
years, equivalent to about five doses a week. Other studies 
produced negative results. However, they had considerable 
methodological weaknesses such as short follow-up time or 
up to 45% of included patients younger than 65 years [215, 
216]. In addition, pain itself is associated with impaired 
cognition [217]. Hence, it can be difficult to identify milder 
forms of DICI in pain patients, especially with screening 
tools like the mini mental state examination (MMSE) or the 
Montreal cognitive assessment (MoCA).

It is not fully understood how NSAIDs may impair cogni-
tion. It is possible that NSAIDs have pharmacological effects 
that have not yet been discovered or that have not been fully 
elucidated. For example, only recently has it been found that 
NSAIDs may inhibit the breakdown, and thus prolong the 
effect, of endocannabinoids [218, 219]. Also, there could be 
distinct mechanisms for acute and chronic cognitive effects.

Considering the biological effects that we do know most 
about (inhibition of cyclooxygenase [COX]-1 and -2), the 
most probable explanation for NSAID-induced cognitive 
impairment would be that NSAIDs reduce the blood flow 
to, and within, the brain. This would resemble a parallel to 
their negative effect on renal blood flow and their potential 
to induce thrombotic cardiovascular events, that is, constric-
tion of arterioles and enhanced aggregation of thrombocytes 
[220–222]. These mechanisms may cause DICI through 
acute or chronic neuronal undersupply of nutrients and oxy-
gen as well as unnoticed multiple small strokes.

Acute and chronic effects: Acute treatment may lead 
to impaired cognition and neurological symptoms. Opti-
cus neuritis with visual field defects after short-term use 
as well as tunnel vision followed by an altered state of 
consciousness after a single dose of ibuprofen have been 
reported [212, 223]. Acute states of pseudo-dementia have 
been observed after one week of treatment [213]. While 
several cases have been reported, delirium seems to be a 
rare complication [224]. Long-term treatment is associated 
with a 70% increased risk of developing dementia including 
Alzheimer’s.

Patient groups at high risk: Elderly patients.

3.13 � Statins

Cholesterol is an integral part of cell membranes and, as 
such, important for nerve cell communication [225, 226]. 
Cholesterol metabolism in neurones and glia cells also plays 
an important role in memory function. Importantly, choles-
terol constitutes around 40% of myelin [227]. Cholesterol is 
poorly water-soluble and transported in the blood stream as 
cholesterol-containing lipoproteins (i.e., LDL- and HDL-
cholesterol). These do not pass the blood–brain barrier eas-
ily. Hence, neurones and glia cells produce their own choles-
terol. As brains get older, cholesterol production and myelin 
formation decrease, both factors contributing to memory 
deterioration. In Alzheimer's disease, there is a reduction 
in cholesterol production and its turnover in the brain [225].

Statins pass the blood–brain barrier. Once in the brain, 
statins reduce cholesterol synthesis the same way they do in 
the liver [226]. Like with all drugs, the ability of statins to 
pass over the blood–brain barrier correlates with their lipo-
philicity. The most lipophilic statin is cerivastatin, followed 
by simvastatin. The least lipophilic statins are pravastatin 
and rosuvastatin [226, 228].

By the same mechanism that reduces cholesterol syn-
thesis, statins also reduce the synthesis of coenzyme Q10 
(ubiquinone). Coenzyme Q10 has several biological func-
tions, one of which is acting as an intracellular antioxidant. 
A deficit of coenzyme Q10 may thus contribute to increased 
neuroinflammation [229, 230].

The effect of statins on cognition is a matter of debate 
because clinical studies, systematic reviews, and meta-anal-
yses produced conflicting results [231]. It is, however, estab-
lished that impaired lipid metabolism can affect brain mye-
lination [121]. Moreover, one should distinguish between 
acute and long-term effects of statins on cognition as they 
possibly (a) are caused by different mechanisms and (b) may 
apply to patients with different clinical characteristics [232]. 
Also, it is possible that statins affect cognitive function by 
acting on other targets than the cholesterol synthesising 
enzyme (HMG-CoA reductase), or by (as yet unidentified) 
indirect mechanisms.

Acute and chronic statin-induced memory loss/amnesia 
has been documented by numerous case reports, some of 
them with a so-called challenge-dechallenge-rechallenge 
design [233–236]. In some patients, a diagnosis of dementia 
or Alzheimer’s disease was reversed after stopping the statin 
[237]. In 2012, the American Food and Drug Administration 
obliged manufacturers of statins to include reversible cogni-
tive impairment (e.g., memory loss, forgetfulness, amnesia, 
memory impairment, confusion) in the prescribing informa-
tion for statins [238]. The hippocampus plays a crucial role 
in memory functions. Mice receiving chronic simvastatin 
treatment showed a deficiency in recognition and spatial 
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memory. Imaging studies in these animals revealed a sig-
nificant decrease of cholesterol in the hippocampus [239].

Regarding long-term effects, several studies found that 
statins induce cognitive decline [237, 240, 241]. However, 
many reviews, meta-analyses and position papers did not 
find detrimental effects and conclude that the beneficial vas-
cular effects of statins outweigh potential cognitive risks 
[41, 232, 242–246]. Methodological issues, including the 
documented neglect and underreporting of DICI in RCTs, 
may explain these divergent results [39]. Moreover, statins 
may exert a positive effect on cognition by preventing the 
development of vascular dementia [232]. However, while 
statins may have a modest effect in slowing the progression 
of cognitive decline in patients with AD, randomised con-
trolled trials failed to support the beneficial effect of statins 
in lowering the risk of dementia [225].

Acute and chronic cognitive effects: Statins seem to 
mainly affect memory functions. Reversible acute amne-
sia after days to weeks of treatment has frequently been 
reported. Chronic treatment (months to years) may lead to 
dementia-like conditions.

Patient groups at high risk: Elderly patients, especially 
those with existing MCI or dementia (high risk of non-
detection of DICI); patients with other cognition-impairing 
drugs, especially those that affect memory (mainly drugs 
with anticholinergic effects).

3.14 � Antihypertensives and Drugs 
with Hypotensive Effects

Adequate treatment of hypertension may have a protective 
effect against dementia but not necessarily against milder 
forms of cognitive decline [247, 248]. However, hypotension 
is a common complication of treatment with antihyperten-
sives including β-blockers and diuretics. It is also seen with 
vasodilating nitrates, tricyclic antidepressants, antipsychot-
ics, dopaminergic antiparkinsonian drugs, benzodiazepines, 
opioids, and SGLT-2 inhibitors [249–253]. Antihistamines 
(e.g., diphenhydramine, cetirizine) and herbal supplements 
(e.g., hawthorn) have only weak to modest hypotensive 
effects but these may add to hypotensive effects of other 
drugs [254–258]. Hypotension, often clinically presenting 
as orthostatic hypotension, is common in hypertensive adults 
and in the elderly, with prevalences ranging from 3.3 to 58% 
[259–261]. In institutionalised elderly individuals, the preva-
lence is up to 70% [250].

Individuals with orthostatic hypotension, regardless of 
age, exhibit deficits in verbal memory and sustained atten-
tion. These deficits are predictors of a cognitive decline that 
surpasses what is typically expected from normal aging 
[262]. Clinical studies, systematic reviews, and meta-analy-
ses have demonstrated that orthostatic hypotension is asso-
ciated not only with dizziness but also with falls, ischemic 

strokes, cognitive impairment, dementia, and increased mor-
tality [249, 260, 263]. Cognitive deficits may manifest in 
various domains; mainly executive and memory functions 
are affected.

Acute and chronic effects: It should be noted that acute 
cognitive effects of orthostatic hypotension may be masked 
if patients are in the supine position but can become acutely 
evident when they change to the upright position. This has 
been reported even in normotensive patients without white 
matter changes [262]. Chronic hypotension may cause cog-
nitive impairment including dementia, mediated by white 
and grey matter damage through cerebral hypoperfusion and 
ischaemia [254–258].

Patient groups at high risk: Patients in all age groups 
with normotensive or hypotensive orthostatic hypotension.

3.15 � Chemotherapeutic Agents

Patients treated for CNS and non-CNS cancers often report 
cognitive symptoms such as impaired attention, memory, 
executive functions, and processing speed. This is com-
monly called cancer-related cognitive impairment (CRCI). 
CRCI is very frequent in both adults and children; for exam-
ple, 15–25% of breast cancer patients show objective cogni-
tive impairment after chemotherapy, as well as up to 32% 
of children with acute lymphoblastic leukaemia [264–266].

Patients commonly refer to CRCI as ‘chemofog’ or 
‘chemobrain’. However, some patients may already have 
cognitive problems before treatment, especially those with 
CNS tumours. Receiving a cancer diagnosis and related 
treatment can be emotionally distressing. An association 
between depression or anxiety and cognitive complaints by 
cancer patients has been found in many studies [6, 267]. On 
the other hand, a solid body of evidence shows that cancer 
treatment can induce acute and long-term cognitive impair-
ment [6, 264, 266]. Patients typically return to baseline 
within 6 months to 2 years post-treatment, although nearly 
one-third may experience persistent cognitive dysfunction 
[266, 268]. Interestingly, one meta-analysis on long-term 
cognitive outcome in cancer survivors found CRCI in cross-
sectional studies but not longitudinal studies. This was prob-
ably caused by methodological issues including a practice 
effects of repeated neuropsychological testing [269].

A variety of mechanisms for drug-induced CRCI have 
been suggested [270]. Most importantly, chemotherapy can 
trigger an inflammatory response in the body, including the 
brain. High levels of proinflammatory cytokines are associ-
ated with cognitive dysfunction [268, 271]. Inflammation-
related oxidative stress can damage neurones and glia cells 
[6, 272]. Furthermore, the blood–brain barrier becomes 
leaky, allowing harmful agents to enter the brain [273]. Sec-
ond, most cancer drugs that enter the brain decrease hip-
pocampal neurogenesis. This impairs cognitive function, 
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especially learning and memory [274]. Third, cancer treat-
ment with cytokines like interferon-α can produce cognitive 
impairment including memory disturbances [275]. Fourth, 
hormone therapies for breast or prostate cancer reduce sex 
hormone production or act antagonistically on sex hormone 
receptors. However, these receptors are also found in the 
brain’s cortex and in the hippocampus where they play a role 
in cognitive function. Thus, it is possible that such therapies 
induce or contribute to CRCI [6, 268].

Acute and chronic effects: Delirium is a common com-
plication in cancer patients. CRCI is even more common.

Patient groups at high risk: Patients with CNS tumours; 
those with advanced cancer; those with psychoactive medi-
cations including opioids, benzodiazepines, corticosteroids; 
elderly patients, especially those with dementia.

4 � Discussion and Conclusions

The aim of this review was not to weigh the pros against 
the cons, to impose dos and don’ts, or to quantify any risks, 
but rather to demonstrate that cognitive impairment may be 
induced by many different drug classes, and to raise aware-
ness. While the evidence level is highly variable, many drug 
classes have a demonstrated potential to induce, or are asso-
ciated with an increased risk of various acute and chronic 
types of cognitive impairment. Compared with research on 
delirium or manifest dementia in the elderly, there is lit-
tle research on milder forms of DICI, especially in younger 
populations. It cannot be stressed enough that DICI is not 
synonymous with dementia or delirium, and that it occurs 
not only in the elderly but also in younger adults and in 
children, for example reduced verbal memory induced by 
antiseizure medications. While a false diagnosis of demen-
tia stands out as the worst case, even subtle forms of DICI 
can have deleterious, life-long consequences if they are not 
recognised correctly. Missed degrees and careers due to 
reduced performance in school or university, losing work, 
broken relationships, losing the right to care for one's child 
or to manage one's own private economy are examples of 
such consequences.

Moreover, much of the published research on DICI con-
sists either of observational studies or of meta-analyses of 
clinical trials. The inherent limitations of observational stud-
ies are well known. It is, thus, very unfortunate that there 
is a considerable lack of high-quality cognitive data on 
DICI from prospective, controlled clinical trials: only 6.5% 
of clinical drug trials actively assess the cognitive safety 
of the trial drug. Of those few trials, most use inadequate 
methods and have a significant publication bias leading to 
underreporting of DICI [39]. This makes systematic reviews 
and meta-analyses prone to produce false-negative results.

It is unlikely that drug manufacturers are not aware of the 
problem posed by inadequate cognitive assessment meth-
ods. This is illustrated by the fact that drug trials intended 
to demonstrate beneficial cognitive effects of the trial drug 
consistently use extended neuropsychological test batteries 
instead of simple screening instruments like the MMSE or 
MoCA (the authors; data obtained from www.​clini​caltr​ials.​
gov).

Given the above and given the epidemiology of cognitive 
impairment including its predicted future development, more 
research on DICI is urgently needed. Primarily, regulatory 
authorities should require an active assessment of cognitive 
function in all drug trials, performed with adequate methods. 
Like monitoring of cardiovascular function and lab values, 
active monitoring of cognitive function should be part of 
all drug trials. Relying on spontaneous reporting or the sole 
use of questionnaires or screening tools such as the MMSE 
or MoCA to assess the cognitive safety of drugs is inade-
quate. We recommend specific assessment of each cognitive 
domain. Ideally, an experienced neuropsychologist should 
select the tests. This should be mandatory for drugs known 
to, intended to, or suspected to affect the CNS, including 
drugs with a primary target outside the CNS. For all other 
drugs, domain-specific cognitive screening tools should be 
used. They should be selected according to the study popula-
tion as well as the condition and drug studied. Examples for 
appropriate tools include EpiTrack®, the Rowland Universal 
Dementia Assessment Scale (RUDAS), or the Mini-Cog®.

Apart from active assessment of cognitive safety in drug 
trials, raised awareness of DICI among health care profes-
sionals is a necessity. DICI should become a regular dif-
ferential diagnosis in all kinds of cognitive impairment in 
patients receiving drug treatment.
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